Wissenschaftliche Publikationen des IFF

Die Veröffentlichungen des IFF finden Sie in der Datenbank der Universitätsbibliothek oder des Fraunhofer IPA.

Die Veröffentlichungen am Institut

Über diesen Link gelangen Sie zu den neuesten Veröffentlichungen des Instituts. Sie befinden sich dann in der Publikationsdatenbank der Fraunhofer-Gesellschaft.

 

Publikationsliste

  1. C. Heise, Von Open Access zu Open Science : Zum Wandel digitaler Kulturen der wissenschaftlichen Kommunikation. Lüneburg: meson press, 2018.
  2. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” vol. 10, pp. 68–78, 2017.
  3. H. Minbashian, H. Adibi, and M. Denghan, “An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations,” vol. 28, no. 12, pp. 2842–2861, 2017.
  4. A. Langer, “Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method,” vol. 4, no. 1, 2018.
  5. T. Dietrich, M. Rumpel, T. Graf, and M. Abdou Ahmed, “Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution,” in Proc. SPIE 9893, Laser Sources and Applications III, 2016, vol. 98930M (27 April 2016).
  6. M. Alkämper, F. Gaspoz, and R. Klöfkorn, “A weak compatibility condition for newest vertex bisection in any dimension,” vol. 40, no. 6, pp. A3853–A3872, 2018.
  7. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number,” 2018.
  8. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” vol. 333, pp. 147–175, 2018.
  9. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Cham, 2018, vol. Proceedings of ENUMATH 2017, no. 126.
  10. A. Langer, “Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise,” vol. 33, no. 7, p. 41, 2017.
  11. I. Martini, B. Haasdonk, and G. Rozza, “Certified reduced basis approximation for the coupling of viscous and inviscid parametrized flow models,” vol. 74, no. 1, pp. 197–219, 2018.
  12. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018.
  13. A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS,” in Advancement in mathematical sciences, Melville, New York, 2018, no. 1897.
  14. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension,” vol. 169, pp. 169–185, 2018.
  15. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of beam misalignment caused by air convection in thin-disk lasers,” in CLEO 2018 © OSA 2018 - Science and Innovations, 2018, vol. Science and Innovations, no. SM1N.4.pdf.
  16. A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse noise,” vol. 96, no. 2, pp. 298–316, 2018.
  17. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” University of Stuttgart, 2018.
  18. M. Salvucci et al., “A Machine Learning Platform to Optimize the Translation of Personalized Network Models to the Clinic.,” JCO clinical cancer informatics, no. 3, pp. 1--17, 2019.
  19. T. Dietrich et al., “Large-area pulse compression gratings with high efficiency and high damage threshold,” Topical meeting on Diffractive Optics, EOS, (2017), 2017.
  20. T. Dietrich et al., “Large-area pulse compression gratings with high efficiency and high damage threshold,” EOS Topical meeting on Diffractive Optics. EOS, 2017.
  21. A. Armiti-Juber and C. Rohde, “On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains,” pp. 1–19, 2018.
  22. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” vol. 24, no. 1, pp. 129–151, 2018.
  23. F. Beirow, M. Eckerle, B. Dannecker, T. Dietrich, M. Abdou Ahmed, and T. Graf, “Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level,” Optics Express, vol. 26, no. 4, p. 10, 2018.
  24. M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon,” vol. 39, no. 1, pp. 423–453, 2019.
  25. F. Gaspoz, K. Siebert, C. Kreuzer, and D. Ziegler, “A convergent time–space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution,” vol. 00, pp. 1–37, 2018.
  26. M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures,” vol. 10, no. 7, 2019.
  27. M. Feistauer, O. Bartoš, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition,” in Proceedings Of Equadiff 2017 Conference, 2017, pp. 127–136.
  28. C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension,” vol. 69, no. 3, pp. 76, 1–40, 2018.
  29. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” vol. 51, no. 2, pp. 307–312, 2018.
  30. A. Barth and A. Stein, “A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients,” vol. 6, no. 4, pp. 1707–1743, 2018.
  31. B. Kane, R. Klöfkorn, and C. Gersbacher, “hp–adaptive discontinuous Galerkin methods for porous media flow,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Cham, 2017, vol. 200, pp. 447–456.
  32. T. Dietrich, S. Piehler, M. Rumpel, T. Graf, and M. Abdou Ahmed, “High-power and high-efficiency frequency-doubled fundamental-mode thin-disk laser,” in OSA Technical Digest (online) (Optical Society of America, 2015), 2015, no. paper AF1A.4.
  33. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows,” 2018.
  34. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints : Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, (ALENEX) 2017, 2017, pp. 185–196.
  35. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation,” vol. 39, no. 4, pp. 867–912, 2018.
  36. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” vol. 291, no. 1, pp. 55–85, 2018.
  37. F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations,” 2018.
  38. J. Magiera and C. Rohde, “A particle-based multiscale solver for Ccmpressible liquid–vapor flow,” in Theory, Numerics and Applications of Hyperbolic Problems, Cham, 2018, vol. 237, no. 2, pp. 291–304.
  39. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” in Theory, Numerics and Applications of Hyperbolic Problems, Cham, 2018, vol. 236, no. 1, pp. 309–322.
  40. S. Dong, T. Haist, T. Dietrich, and W. Osten, “Hybrid curvature and modal wavefront sensor,” in Unconventional Imaging and Wavefront Sensing 2014, edited by Jean J. Dolne, Thomas J. Karr, Victor L. Gamiz, Proc. of SPIE, 2014, vol. 9227, no. 922702.
  41. F. Meyer, C. Rohde, and J. Giesselmann, “A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method,” vol. 00, pp. 1–28, 2019.
  42. B. Haasdonk, “Reduced basis methods for parametrized PDEs : a tutorial introduction for stationary and instationary problems,” in Model Reduction and Approximation, P. Benner, M. Ohlberger, A. Cohen, and K. Willcox, Eds. siam, 2017, pp. 65–136.
  43. J. Giesselmann and T. Pryer, “Goal-Oriented Error Analysis of a DG Scheme for a Second Gradient Elastodynamics Model,” in Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Cham, 2017, vol. 199, pp. 457–466.
  44. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,” vol. 23, no. 1, p. 8, 2018.
  45. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced basis approximation for the discrete-time parametric algebraic Riccati equation,” University of Stuttgart, Institute for Applied Analysis and Numerical Simulation, 2017.
  46. A. Bhatt, J. Fehr, and B. Hassdonk, “Model Order Reduction of an Elastic Body under Large Rigid Motion,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Cham, 2018, no. 126.
  47. B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” pp. 1–23, 2018.
  48. H. Pampel and M. Tullney, “Open-Access-Publikationsfonds,” in Praxishandbuch Open Access, K. Söllner and B. Mittermaier, Eds. Berlin: De Gruyter Saur, 2017, pp. 162–172.
  49. M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs,” in Signal Processing in Photonic Communications, Washington, D.C., USA, 2018.
  50. M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions,” vol. 5, no. 1, pp. 3–19, 2017.
  51. H. Minbashian, H. Adibi, and M. Denghan, “On resolution of boundary layers of exponential profile with small thickness using an upwind method in IGA.” 2017.
  52. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise,” vol. 143, pp. 215–225, 2018.
  53. P. Michler, M. Jetter, T. Herzog, and M. Paul, “Vorrichtung und Verfahren zur Erzeugung einer Einzelphotonenemission,” EP19155703.2-1212, 2019.
  54. E. Euler, “Open Access : Verpflichtung oder Geschäftsmodell für Kultureinrichtungen?!,” in Handbuch Kulturportale : Online-Angebote aus Kultur und Wissenschaft, E. Euler, M. Hagedorn-Saupe, G. Maier, W. Schweibenz, and J. Sieglerschmidt, Eds. Berlin: De Gruyter Saur, 2015, pp. 81–101.
  55. M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow in porous media,” 2018.
  56. A. O. A. der Schwerpunktinitiative and D. I. der Allianz der deutschen Wissenschaftsorganisationen, Eds., “Open-AccessStrategien für wissenschaftliche Einrichtungen : Bausteine und Beispiele,” 2012.
  57. B. Kane, “Using Dune-Fem for adaptive higher order discontinuous Galerkin methods for two-phase flow in porous media,” vol. 5, no. 1, pp. 129–149, 2017.
  58. N.-A. Dreier, M. Altenbernd, C. Engwer, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application,” in 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Piscataway, NJ, 2018.
  59. T. Dietrich et al., “Highly-efficient grating waveguide mirror enabling kW-class intra-cavity frequency-doubled thin-disk laser,” in Topical meeting on Diffractive Optics, 2017.
  60. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-Assisted Interactive Mobile Simulations for Pervasive Applications,” in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2017.
  61. H. Minbashian, “Wavelet-based multiscale methods for numerical solution of hyperbolic conservation laws,” PhD dissertation, Tehran, 2017.
  62. W. Reese-Schäfer, Karl-Otto Apel und die Diskursethik. Eine Einführung, 2. Wiesbaden, 2017.
  63. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Cham, 2017, vol. 200, pp. 189–197.
  64. T. Koeppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,” International Journal for Numerical Methods in Biomedical Engineering, vol. 34, no. 8, p. e3095, 2018.
  65. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, 2019, vol. 126.
  66. B. für Bildung und Forschung (BMBF), “Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung,” 2016.
  67. S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive definite kernel functions,” vol. 55, no. 1, pp. 2; 1–24, 2018.
  68. A. O. A. der Schwerpunktinitiative and D. I. der Allianz der deutschen Wissenschaftsorganisationen, Eds., “Open-AccessStrategien für wissenschaftliche Einrichtungen,” 2012.
  69. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow in porous media,” vol. 333, pp. 331–355, 2018.
  70. A. Bhatt and R. A. VanGorder, “Chaos in a non-autonomous nonlinear system describing asymmetric water wheels,” vol. 93, no. 4, pp. 1977–1988, 2018.
  71. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181.
  72. BMBF, “Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung,” 2016.
  73. J. Giesselmann, N. Kolbe, M. Medviďová-Lukáčová, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model,” vol. 23, no. 10, pp. 4397–4431, 2018.
  74. H. Minbashian, H. Adibi, and M. Denghan, “An adaptive wavelet space-time SUPG method for hyperbolic conservation laws,” vol. 33, no. 6, pp. 2062–2089, 2017.
  75. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element method to the simulation of cable-driven parallel robots,” in Computational Kinematics, Cham, 2017, vol. 50, pp. 198–205.
  76. A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018.
  77. F. Scholze, R. Bertelmann, M. Kindling, H. Pampel, and P. Vierkant, “Open Access und Forschungsdaten,” in Bibliothek der Zukunft - Zukunft der Bibliothek : Festschrift für Elmar Mittler, A. Degkwitz, Ed. Berlin: De Gruyter Saur, 2016, pp. 156–164.
  78. M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data,” in Imaging, Vision and Learning Based on Optimization and PDEs, 2018.
  79. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-order modeling (ROM) for simulation and optimization, W. Keiper, A. Milde, and S. Volkwein, Eds. Cham: Springer International Publishing, 2018, pp. 21–45.
  80. A. Feuer, J.-U. Thomas, C. Freitag, R. Weber, and T. Graf, “Single‑pass laser separation of8mm thick glass withamillijoule picosecond pulsed Gaussian–Bessel beam,” Journal of Applied Physics, vol. 125, no. 5, p. 213, 2019.
  81. P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” PhD dissertation, 2018.
  82. A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction.” Department of Mathematics, IIT Roorkee, 2018.
  83. A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation,” in Model Reduction of Parametrized Systems, vol. 17, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds. Cham: Springer, 2017, pp. 333–347.
  84. J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,” in 9th Vienna International Conference on Mathematical Modelling, 2018, vol. 51, no. 2, pp. 202–207.
  85. S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, Cham, 2017, vol. 201, pp. 39–59.
  86. T. Dietrich et al., “A 1.1 kW CW intra-cavity frequency-doubled thin-disk laser,” in Advanced Solid State Lasers 2017, Nagoya, Aichi Japan, 2017, vol. OSA Laser Congress 2017 (ASSL,LAC) © OSA 2017, pp. ATu6A--1.
  87. M. Koeppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” pp. 1–16, 2018.
  88. A. O. A. der Schwerpunktinitiative and D. I. der Allianz der deutschen Wissenschaftsorganisationen, Eds., “Open-AccessStrategien für wissenschaftliche Einrichtungen : Bausteine und Bauspiele,” 2012.
  89. T. Dietrich, “Investigations on ring-shaped pump beam distributions for high-power thin-disk lasers,” Master thesis, 2014.
  90. C. Röhrer, C. Codemard, G. Kleem, M. A. Ahmed, and T. Graf, “Preservation of Good Beam Quality over Several Hundred Meters in Highly Multimode Fibers,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. SoW4H.2.
  91. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter stochastischer Volatilität,” PhD dissertation, 2016.
  92. C. Röhrer, F. Gérôme, B. Debord, M. Abdou Ahmed, T. Graf, and F. Benabid, “Polarization maintaining behavior of hollow-core fibers,” 2018.
  93. A. Loescher, C. Röcker, J.-P. Negel, M. Abdou Ahmed, and T. Graf, “Polarization-based laser pulse modulation scheme for high-power ultrafast lasers with high repetition rates.” 2018.
  94. S. Drößler and D. Iglezakis, “Poster Exzellenzinitiative: Research Data Management, Open Access Strategy, Research Intelligence.” 14-Mar-2019.
  95. C. Röcker et al., “kW-class Thin-Disk Multipass Amplifier delivering sub-300fs pulses at a repetition rate of 1 MHz for high-throughput laser-based material processing.” 2018.
  96. O. Seifert, A. Rau, N. Beha, F. Richter, and R. E. Kontermann, “Diabody-Ig: a novel platform for the generation of multivalent and multispecific antibody molecules,” mAbs, p. 19420862.2019.1603024, 2019.
  97. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable radial bases,” in AIP conference proceedings, 2016, no. 1738, 1.
  98. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Levi processes,” vol. 6, no. 2, pp. 286–334, 2016.
  99. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors - A case study based on the Haswell and Cortex-A15 microarchitectures,” Computer science - research and development, vol. 31, no. 4, pp. 225–234, 2016.
  100. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the non-smooth case,” vol. 219, no. 2, pp. 701–718, 2016.

Add a new title here

  1. Reese-Schäfer, W. (2017). Karl-Otto Apel und die Diskursethik. Eine Einführung (2.). Wiesbaden. https://doi.org/10.1007/978-3-658-15533-9
  2. der Schwerpunktinitiative, A. O. A., & der Allianz der deutschen Wissenschaftsorganisationen, D. I. (Eds.). (2012c). Open-AccessStrategien für wissenschaftliche Einrichtungen : Bausteine und Beispiele. (A. O. A. der Schwerpunktinitiative & D. I. der Allianz der deutschen Wissenschaftsorganisationen).
  3. Pampel, H., & Tullney, M. (2017a). Open-Access-Publikationsfonds. In K. Söllner & B. Mittermaier, K. Söllner & B. Mittermaier (Eds.), Praxishandbuch Open Access (pp. 162–172). Berlin: De Gruyter Saur. https://doi.org/10.1515/9783110494068-019
  4. Pampel, H., & Tullney, M. (2017b). Open-Access-Publikationsfonds. In K. Söllner & B. Mittermaier, K. Söllner & B. Mittermaier (Eds.), Praxishandbuch Open Access (pp. 162–172). Berlin: De Gruyter Saur. https://doi.org/10.1515/9783110494068-019
  5. Euler, E. (2015a). Open Access : Verpflichtung oder Geschäftsmodell für Kultureinrichtungen?! In E. Euler, M. Hagedorn-Saupe, G. Maier, W. Schweibenz, & J. Sieglerschmidt, E. Euler, M. Hagedorn-Saupe, G. Maier, W. Schweibenz, & J. Sieglerschmidt (Eds.), Handbuch Kulturportale : Online-Angebote aus Kultur und Wissenschaft (pp. 81–101). Berlin: De Gruyter Saur. https://doi.org/10.17176/20180718-144920-0
  6. Euler, E. (2015b). Open Access : Verpflichtung oder Geschäftsmodell für Kultureinrichtungen?! In E. Euler, M. Hagedorn-Saupe, G. Maier, W. Schweibenz, & J. Sieglerschmidt, E. Euler, M. Hagedorn-Saupe, G. Maier, W. Schweibenz, & J. Sieglerschmidt (Eds.), Handbuch Kulturportale : Online-Angebote aus Kultur und Wissenschaft (pp. 81–101). Berlin: De Gruyter Saur. https://doi.org/10.17176/20180718-144920-0
  7. Scholze, F., Bertelmann, R., Kindling, M., Pampel, H., & Vierkant, P. (2016a). Open Access und Forschungsdaten. In A. Degkwitz, A. Degkwitz (Ed.), Bibliothek der Zukunft - Zukunft der Bibliothek : Festschrift für Elmar Mittler (pp. 156–164). Berlin: De Gruyter Saur. Retrieved from http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:1487907:4/component/escidoc:1487908/1487907.pdf
  8. Scholze, F., Bertelmann, R., Kindling, M., Pampel, H., & Vierkant, P. (2016b). Open Access und Forschungsdaten. In A. Degkwitz, A. Degkwitz (Ed.), Bibliothek der Zukunft - Zukunft der Bibliothek : Festschrift für Elmar Mittler (pp. 156–164). Berlin: De Gruyter Saur. Retrieved from http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:1487907:4/component/escidoc:1487908/1487907.pdf
  9. Heise, C. (2018a). Von Open Access zu Open Science : Zum Wandel digitaler Kulturen der wissenschaftlichen Kommunikation. Lüneburg: meson press. https://doi.org/10.14619/1303
  10. Heise, C. (2018b). Von Open Access zu Open Science : Zum Wandel digitaler Kulturen der wissenschaftlichen Kommunikation. Lüneburg: meson press. https://doi.org/10.14619/1303
  11. Salvucci, M., Rahman, A., Resler, A. J., Udupi, G. M., McNamara, D. A., Kay, E. W., … Prehn, J. H. M. (2019). A Machine Learning Platform to Optimize the Translation of Personalized Network Models to the Clinic. JCO Clinical Cancer Informatics, (3), 1--17. https://doi.org/10.1200/CCI.18.00056
  12. der Schwerpunktinitiative, A. O. A., & der Allianz der deutschen Wissenschaftsorganisationen, D. I. (Eds.). (2012b). Open-AccessStrategien für wissenschaftliche Einrichtungen : Bausteine und Bauspiele. (A. O. A. der Schwerpunktinitiative & D. I. der Allianz der deutschen Wissenschaftsorganisationen).
  13. für Bildung und Forschung (BMBF), B. (2016a). Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung. (B. für Bildung und Forschung (BMBF), B. für Bildung und Forschung (BMBF), Ed.). Retrieved from https://www.bmbf.de/upload_filestore/pub/Open_Access_in_Deutschland.pdf
  14. der Schwerpunktinitiative, A. O. A., & der Allianz der deutschen Wissenschaftsorganisationen, D. I. (Eds.). (2012d). Open-AccessStrategien für wissenschaftliche Einrichtungen : Bausteine und Beispiele. (A. O. A. der Schwerpunktinitiative & D. I. der Allianz der deutschen Wissenschaftsorganisationen).
  15. der Schwerpunktinitiative, A. O. A., & der Allianz der deutschen Wissenschaftsorganisationen, D. I. (Eds.). (2012a). Open-AccessStrategien für wissenschaftliche Einrichtungen. (A. O. A. der Schwerpunktinitiative & D. I. der Allianz der deutschen Wissenschaftsorganisationen).
  16. für Bildung und Forschung (BMBF), B. (2016b). Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung. Retrieved from https://www.bmbf.de/upload_filestore/pub/Open_Access_in_Deutschland.pdf
  17. für Bildung und Forschung (BMBF), B. (2016c). Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung. (B. für Bildung und Forschung (BMBF), B. für Bildung und Forschung (BMBF), Ed.). Retrieved from https://www.bmbf.de/upload_filestore/pub/Open_Access_in_Deutschland.pdf
  18. BMBF. (2016). Open Access in Deutschland : Die Strategie des Bundesministeriums für Bildung und Forschung.
  19. Dietrich, Tom, Mueller, L., Rumpel, M., Moeller, M., Gallais, L., Hoenninger, C., … Graf, T. (2017). Large-area pulse compression gratings with high efficiency and high damage threshold. Topical Meeting on Diffractive Optics, EOS, (2017).
  20. Feuer, A., Thomas, J.-U., Freitag, C., Weber, R., & Graf, T. (2019c). Single‑pass laser separation of8mm thick glass withamillijoule picosecond pulsed Gaussian–Bessel beam. Journal of Applied Physics, 125(5), 213. https://doi.org/https://doi.org/10.1007/s00339-019-2624-7
  21. Beirow, F., Eckerle, M., Dannecker, B., Dietrich, T., Abdou Ahmed, M., & Graf, T. (2018). Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level. Optics Express, 26(4), 10. Retrieved from https://doi.org/10.1364/OE.26.004401
  22. Feuer, A., Thomas, J.-U., Freitag, C., Weber, R., & Graf, T. (2019a). Single-pass laser separation of 8 mm thick glass with a millijoule picosecond pulsed Gaussian–Bessel beam. Journal of Applied Physics, 125(5), 213. https://doi.org/https://doi.org/10.1007/s00339-019-2624-7
  23. Feuer, A., Thomas, J.-U., Freitag, C., Weber, R., & Graf, T. (2019b). Single-pass laser separation of 8 mm thick glass with a millijoule picosecond pulsed Gaussian–Bessel beam. Journal of Applied Physics, 125(5), 213. https://doi.org/https://doi.org/10.1007/s00339-019-2624-7
  24. Dietrich, Tom, Piehler, S., Rumpel, M., Graf, T., & Abdou Ahmed, M. (2015). High-power and high-efficiency frequency-doubled fundamental-mode thin-disk laser. In OSA Technical Digest (online) (Optical Society of America, 2015). Retrieved from https://doi.org/10.1364/ASSL.2015.AF1A.4
  25. Dietrich, Tom. (2014). Investigations on ring-shaped pump beam distributions for high-power thin-disk lasers (Master thesis No. 15).
  26. Dong, S., Haist, T., Dietrich, T., & Osten, W. (2014a). Hybrid curvature and modal wavefront sensor. In Unconventional Imaging and Wavefront Sensing 2014, edited by Jean J. Dolne, Thomas J. Karr, Victor L. Gamiz, Proc. of SPIE (Vol. 9227). Retrieved from http://proceedings.spiedigitallibrary.org/
  27. Dong, S., Haist, T., Dietrich, T., & Osten, W. (2014b). Hybrid curvature and modal wavefront sensor. In Unconventional Imaging and Wavefront Sensing 2014, edited by Jean J. Dolne, Thomas J. Karr, Victor L. Gamiz, Proc. of SPIE (Vol. 9227). Retrieved from http://proceedings.spiedigitallibrary.org/
  28. Dietrich, T., Müller, L., Rumpel, M., Möller, M., Gallais, L., Hönninger, C., … Graf, T. (2017). Large-area pulse compression gratings with high efficiency and high damage threshold. EOS Topical Meeting on Diffractive Optics. EOS.
  29. Dietrich, T., Piehler, S., Rumpel, M., Villeval, P., Lupinski, D., M., … Graf, T. (2017). Highly-efficient grating waveguide mirror enabling kW-class intra-cavity frequency-doubled thin-disk laser. In Topical meeting on Diffractive Optics. EOS.
  30. Dietrich, Tom, Piehler, S., Rumpel, M., Villeval, P., Lupinski, D., Ahmed, M. A., & Graf, T. (2017). A 1.1 kW CW intra-cavity frequency-doubled thin-disk laser. In Advanced Solid State Lasers 2017, Nagoya, Aichi Japan (Vol. OSA Laser Congress 2017 (ASSL,LAC) © OSA 2017, pp. ATu6A--1). Optical Society of America. Retrieved from https://www.osapublishing.org/abstract.cfm?uri=ASSL-2017-ATu6A.1
  31. Dietrich, Tom, Rumpel, M., Graf, T., & Abdou Ahmed, M. (2016). Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution. In Proc. SPIE 9893, Laser Sources and Applications III (Vol. 98930M (27 April 2016)). SPIE. https://doi.org/10.1117/12.2230682
  32. Feistauer, M., Roskovec, F., & Sändig, A.-M. (2019). Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon, 39(1), 423–453. https://doi.org/10.1093/imanum/drx070
  33. Feistauer, M., Bartoš, O., Roskovec, F., & Sändig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition. In K. Mikula, D. Ševčovič, & J. Urbán, K. Mikula, D. Ševčovič, & J. Urbán (Eds.), Proceedings Of Equadiff 2017 Conference (pp. 127–136). Slovak University of Technology.
  34. Minbashian, H. (2017). Wavelet-based multiscale methods for numerical solution of hyperbolic conservation laws (PhD dissertation). Tehran.
  35. Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2018). Adaptive regularization for reconstruction from subsampled data. In X.-C. Tai, E. Bae, & M. Lysaker, X.-C. Tai, E. Bae, & M. Lysaker (Eds.), Imaging, Vision and Learning Based on Optimization and PDEs. Springer International Publishing. https://doi.org/10.1007/978-3-319-91274-5_1
  36. Martini, I., Haasdonk, B., & Rozza, G. (2018). Certified reduced basis approximation for the coupling of viscous and inviscid parametrized flow models, 74(1), 197–219. https://doi.org/10.1007/s10915-017-0430-y
  37. Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients, 6(4), 1707–1743. https://doi.org/10.1137/17M1148888
  38. De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker, G. E. Fasshauer & L. L. Schumaker (Eds.), Approximation Theory XV: San Antonio 2016 (Vol. 201, pp. 39–59). Cham: Springer. https://doi.org/10.1007/978-3-319-59912-0_3
  39. Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes, C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (Vol. 200, pp. 189–197). Cham: Springer. https://doi.org/10.1007/978-3-319-57394-6_21
  40. Giesselmann, J., & Pryer, T. (2017). Goal-Oriented Error Analysis of a DG Scheme for a Second Gradient Elastodynamics Model. In C. Cancès & P. Omnes, C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects (Vol. 199, pp. 457–466). Cham: Springer. https://doi.org/10.1007/978-3-319-57397-7_39
  41. Meyer, F., Rohde, C., & Giesselmann, J. (2019). A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method, 00, 1–28. https://doi.org/10.1093/imanum/drz004
  42. Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation for the discrete-time parametric algebraic Riccati equation. University of Stuttgart, Institute for Applied Analysis and Numerical Simulation.
  43. Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2018). A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow. In Theory, Numerics and Applications of Hyperbolic Problems (Vol. 236, pp. 309–322). Cham: Springer. https://doi.org/10.1007/978-3-319-91545-6_25
  44. Schmidt, A., & Haasdonk, B. (2018a). Data-driven surrogates of value functions and applications to feedback control for dynamical systems, 51(2), 307–312. https://doi.org/10.1016/j.ifacol.2018.03.053
  45. Bhatt, A., & VanGorder, R. A. (2018). Chaos in a non-autonomous nonlinear system describing asymmetric water wheels, 93(4), 1977–1988. https://doi.org/10.1007/s11071-018-4301-3
  46. Fehr, J., Grunert, D., Bhatt, A., & Haasdonk, B. (2018). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. In F. Breitenecker, W. Kemmetmüller, A. Körner, A. Kugi, & I. Troch, F. Breitenecker, W. Kemmetmüller, A. Körner, A. Kugi, & I. Troch (Eds.), 9th Vienna International Conference on Mathematical Modelling (Vol. 51, pp. 202–207). International Federation of Automatic Control (IFAC). https://doi.org/10.1016/j.ifacol.2018.03.035
  47. Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop, F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (Vol. 126). Springer. https://doi.org/10.1007/978-3-319-96415-7_55
  48. Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints : Exactly and in Practice. In S. Fekete & V. Ramachandran, S. Fekete & V. Ramachandran (Eds.), Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, (ALENEX) 2017 (pp. 185–196). https://doi.org/10.1137/1.9781611974768.15
  49. Schmidt, A., & Haasdonk, B. (2018b). Reduced basis approximation of large scale parametric algebraic Riccati equations, 24(1), 129–151. https://doi.org/10.1051/cocv/2017011
  50. Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element method to the simulation of cable-driven parallel robots. In S. Zeghloul, L. Romdhane, & M. A. Laribi, S. Zeghloul, L. Romdhane, & M. A. Laribi (Eds.), Computational Kinematics (Vol. 50, pp. 198–205). Cham: Springer. https://doi.org/10.1007/978-3-319-60867-9_23
  51. Haasdonk, B. (2017). Reduced basis methods for parametrized PDEs : a tutorial introduction for stationary and instationary problems. In P. Benner, M. Ohlberger, A. Cohen, & K. Willcox, P. Benner, M. Ohlberger, A. Cohen, & K. Willcox (Eds.), Model Reduction and Approximation (pp. 65–136). siam. https://doi.org/10.1137/1.9781611974829.ch2
  52. Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation, 10, 68–78. https://doi.org/10.14658/pupj-drna-2017-Special_Issue-9
  53. Minbashian, H., Adibi, H., & Denghan, M. (2017c). On resolution of boundary layers of exponential profile with small thickness using an upwind method in IGA.
  54. Minbashian, H., Adibi, H., & Denghan, M. (2017b). An adaptive wavelet space-time SUPG method for hyperbolic conservation laws, 33(6), 2062–2089. https://doi.org/10.1002/num.22180
  55. Alkämper, M., Gaspoz, F., & Klöfkorn, R. (2018). A weak compatibility condition for newest vertex bisection in any dimension, 40(6), A3853–A3872. https://doi.org/10.1137/17M1156137
  56. Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions, 5(1), 3–19. https://doi.org/10.11588/ans.2017.1.27475
  57. Gaspoz, F., Siebert, K., Kreuzer, C., & Ziegler, D. (2018). A convergent time–space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution, 00, 1–37. https://doi.org/10.1093/imanum/dry005
  58. De Marchi, S., Iske, A., & Santin, G. (2018a). Image reconstruction from scattered Radon data by weighted positive definite kernel functions, 55(1), 2; 1–24. https://doi.org/10.1007/s10092-018-0247-6
  59. Armiti-Juber, A., & Rohde, C. (2018). On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains, 1–19. https://doi.org/10.1007/s10596-018-9756-2
  60. Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-Assisted Interactive Mobile Simulations for Pervasive Applications. In 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE. https://doi.org/10.1109/PERCOM.2017.7917857
  61. Langer, A. (2017). Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise, 33(7), 41. https://doi.org/10.1088/1361-6420/33/7/074002
  62. Koeppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., … Rohde, C. (2018). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario, 1–16. https://doi.org/10.1007/s10596-018-9785-x
  63. Magiera, J., & Rohde, C. (2018). A particle-based multiscale solver for Ccmpressible liquid–vapor flow. In Theory, Numerics and Applications of Hyperbolic Problems (Vol. 237, pp. 291–304). Cham: Springer. https://doi.org/10.1007/978-3-319-91548-7_23
  64. Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban, P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Eds.), Model Reduction of Parametrized Systems (Vol. 17, pp. 333–347). Cham: Springer. https://doi.org/10.1007/978-3-319-58786-8_21
  65. Minbashian, H., Adibi, H., & Denghan, M. (2017a). An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations, 28(12), 2842–2861. https://doi.org/10.1108/HFF-08-2017-0320
  66. Kane, B. (2017). Using Dune-Fem for adaptive higher order discontinuous Galerkin methods for two-phase flow in porous media, 5(1), 129–149. https://doi.org/10.11588/ans.2017.1.28068
  67. Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp–adaptive discontinuous Galerkin methods for porous media flow. In C. Cancès & P. Omnes, C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (Vol. 200, pp. 447–456). Cham: Springer. https://doi.org/10.1007/978-3-319-57394-6_47
  68. Alla, A., Haasdonk, B., & Schmidt, A. (2018). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. University of Stuttgart.
  69. Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels, 291(1), 55–85. https://doi.org/10.1002/mana.201600024
  70. Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný, M. Bulicek, E. Feireisl, & M. Pokorný (Eds.), New trends and results in mathematical description of fluid flows (pp. 115–181). Basel: Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
  71. Dietrich, Tom, Piehler, S., Röcker, C., Rumpel, M., Abdou Ahmed, M., & Graf, T. (2018). Passive compensation of beam misalignment caused by air convection in thin-disk lasers. In CLEO 2018 © OSA 2018 - Science and Innovations (Vol. Science and Innovations). Retrieved from https://doi.org/10.1364/CLEO_SI.2018.SM1N.4
  72. Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise, 143, 215–225. https://doi.org/10.1016/j.matcom.2017.03.007
  73. Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity (PhD dissertation).
  74. Koeppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 34(8), e3095. https://doi.org/10.1002/cnm.3095
  75. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media, 333, 331–355. https://doi.org/10.1016/j.cma.2018.01.029
  76. Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem, 23(1), 8. https://doi.org/doi:10.3390/mca23010008
  77. Köppel, M., Martin, V., & Roberts, J. E. (2019). A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures, 10(7). https://doi.org/10.1007/s13137-019-0117-7
  78. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension, 169, 169–185. https://doi.org/10.1016/j.compfluid.2017.03.026
  79. Bhatt, A., Fehr, J., & Hassdonk, B. (2018). Model Order Reduction of an Elastic Body under Large Rigid Motion. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop, F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications - ENUMATH 2017. Cham: Springer.
  80. Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction. Department of Mathematics, IIT Roorkee.
  81. Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein, W. Keiper, A. Milde, & S. Volkwein (Eds.), Reduced-order modeling (ROM) for simulation and optimization (pp. 21–45). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
  82. Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2018). Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows. https://doi.org/10.1142/S2591728518500445
  83. Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow in porous media.
  84. Gimperlein, H., Meyer, F., Özdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation, 39(4), 867–912.
  85. Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs. In Signal Processing in Photonic Communications. Washington, D.C., USA: OSA, The Optical Society.
  86. Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart.
  87. Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. Retrieved from /brokenurl#arXiv:1805.10177v1
  88. Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number.
  89. Bhatt, A., & Haasdonk, B. (2018). Certified and structure-preserving model order reduction of EMBS. In B. P. Chamola & P. Kumari, B. P. Chamola & P. Kumari (Eds.), Advancement in mathematical sciences. Melville, New York: AIP Publishing.
  90. Gimperlein, H., Meyer, F., Özdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
  91. Rohde, C., & Zeiler, C. (2018). On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension, 69(3), 76, 1–40.
  92. Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product, 1–23. Retrieved from /brokenurl#arXiv:1803.07799
  93. Langer, A. (2018a). Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method, 4(1). https://doi.org/10.3390/jimaging4010012
  94. Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop, F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications - ENUMATH 2017 (Vol. Proceedings of ENUMATH 2017). Cham: Springer.
  95. Langer, A. (2018c). Overlapping domain decomposition methods for total variation denoising.
  96. Langer, A. (2018b). Locally adaptive total variation for removing mixed Gaussian-impulse noise, 96(2), 298–316. https://doi.org/10.1080/00207160.2018.1438603
  97. Dreier, N.-A., Altenbernd, M., Engwer, C., & Göddeke, D. (2018). A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application. In I. Merelli, P. Liò, & I. Kotenko, I. Merelli, P. Liò, & I. Kotenko (Eds.), 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. Piscataway, NJ: IEEE. https://doi.org/10.1109/PDP2018.2018.00117
  98. Giesselmann, J., Kolbe, N., Medviďová-Lukáčová, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model, 23(10), 4397–4431. https://doi.org/10.3934/dcdsb.2018169
  99. De Marchi, S., Iske, A., & Santin, G. (2018b). Image reconstruction from scattered Radon data by weighted positive definite kernel functions, 55(1), 1–24. https://doi.org/10.1007/s10092-018-0247-6
  100. Michler, P., Jetter, M., Herzog, T., & Paul, M. (2019). EP19155703.2-1212.
Dieses Bild zeigt Schlegel
Dipl.-Ing.

Thilo Schlegel

Leitung Matrix-Fusion-Factory